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When we give a test, it is usually because we have to make a decision and we 

want the results of the testing situation to help us make that decision. We have to 

interpret those results, and to make the case that our interpretations are valid for that 

situation. Validity, therefore, is an argument that we make about our assumptions, based 

on test scores. We must make the case that the instrument we use does, in fact, measure 

the psychological trait we hope to measure. Validity is, according to the Standards for 

Educational and Psychological Testing,  “the most fundamental consideration in 

developing and evaluating tests” (cited in Hogan & Agnello, 2004). 

One kind of support for the validity of the interpretation is that the test measures 

the psychological trait consistently. This is known as the reliability of the test. 

Reliability, i.e., a measure of the consistency of the application of an instrument to a 

particular population at a particular time, is a necessary condition for validity. A reliable 

test may or may not be valid, but an unreliable test can never be valid. This means that a 

test cannot be more valid than it is reliable, i.e., reliability is the upper limit of validity. 

It is important to remember that any instrument, i.e., the SLEP test or TOEFL, does not 

have "reliability." An instrument that demonstrates high reliability in one situation may 

show low reliability in another. Reliability resides in the interaction between a particular 

task and a particular population of test-takers. 

 

While the reliability of a test is clearly important, it is probably one of the least 

understood concepts in testing. One of the purposes of the reliability coefficient of a test 

is to give us a standard index with which to evaluate the validity of a test. More 

importantly, the reliability coefficient provides us with a way to find the SEM, the 

Standard Error of Measurement. SEM allows practitioners to answer the question, "If I 

give this test to this student again, what score would she achieve?" In high stakes testing, 

this is a critical issue. A test taker gets 79. The cut-off is 80. Her life will take very 
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different paths based on your judgment. How confident are you of your test? Does she 

pass or fail? 

 

In the first part of this paper, I will review how the reliability index, K-R20, and 

the Standard Error of Measurement are calculated under Classical Test Theory. I will 

then review the basic principles of Item Response Theory, and how the Information 

Function is used to obtain a Standard Error of the Estimate, a statistic similar to the 

SEM. I will conclude with an explanation of how this affects the scores reported by V-

Check and how the scores can be interpreted. 

 

Reliability and Standard Error of Measurement 

One of the most commonly reported indices of reliability under Classical Test 

Theory is the Kuder-Richardson Formula 20, or K-R20. 

Kuder-Richardson Formula 20  
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where  k  is the number of items on the test 

  pq  is the sum of the item variance 

 p  is the total of correct responses divided by the number of examinees 

 q  is the total of incorrect responses divided by the number examinees 

 s
2
 is the test score variance 

 

This formula is applied to dichotomously scored data. In theory, this reliability 

index ranges from +1.00 to –1.00. Reliability coefficients of over .80 are considered to 

be very good, and over .90 are excellent. To obtain the K-R20 index for a test, you must 

first find the sum of the variance for each item (pq) and the variance for the test scores. 

Remember that variance is a measure of the dispersion, or range, of the variable. 

Reliability, as measured by the K-R20 formula, is the result of these two factors, item 

variance, and test variance. The K-R20 reliability index is directly proportional to the 

variances of the test, i.e., if the sum of the item variance remains constant, as the test 
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variance increases, so too does the reliability. This is also why reliability by itself paints 

an incomplete picture, as we shall see in the next section. 

Standard Error of Measurement 

The Standard Error of Measurement attempts to answers the question, "If I give 

this test to this student again, what score would she achieve?” The SEM is calculated 

using the following formula: 

 rsSEM  1  (2) 

 

where  r  is the reliability estimate of the test 

 s is the standard deviation of the test 

 

We interpret the Standard Error of Measurement based on a normal distribution. 

That is to say, we would expect the score to be within 1 SEM 64% of the time, and to be 

within 2 SEM 98% of the time.  When we speak of 95% confidence intervals, we are 

confident that the student would be within 1.96*SEM of the score 19 times out of 20. 

For example, a 100-item test with a K-R 20 of .90 (excellent!) and a standard deviation 

of 10 would have an SEM of 9.110   or 3.16.  If a student had a score of 75, we 

would interpret this as follows. If the student took the test repeatedly, we would expect 

her scores to fall between 71.84 and 78.16 64% of the time. If we wanted to be 95% 

confident in the test scores, we would look at the interval of 75  1.96(3.16). Now say 

we had another 100-item test with a K-R 20 of .60 (somewhat low) and a standard 

deviation of 5.  The SEM would be 6.15   or 3.16 and we could interpret it exactly 

the same as the previous test. 

 

Another way that we can interpret the SEM is that it shows us the error variation 

around the student‟s true score. In classical test theory, the observed score is composed 

of the true score plus error, and this error is normally distributed. Under this 

interpretation, the students‟ observed scores are with 1 SEM of the true scores 68% of 

the time. 
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Item Response Theory 

 

Item response theory is a probabilistic model that attempts to explain the 

response of a person to an item (Hambleton, Swaminathan, & Rogers, 1991; Lord, 

1980). In its simplest form, item response theory posits that the probability of a random 

person j with ability θj answering a random item i with difficulty bi correctly is 

conditioned upon the ability of the person and the difficulty of the item. In other words, 

if a person has a high ability in a particular field, he or she will probably get an easy 

item correct. 

Conversely, if a person has a low ability and the item is difficult, he or she will 

probably get the item wrong. For example, we can expect someone with a large 

vocabulary to respond that they know easy words like „smile‟ and „beautiful‟ but we 

should not expect someone with a small vocabulary to know words like „subsidy‟ or 

„dissipate.‟  When we analyze item responses, we are trying to answer the question, 

“What is the probability of a person with a given ability responding correctly to an item 

with a given difficulty?” This can be expressed mathematically through a number of 

different formulae, but for this explanation I will focus on the One-parameter Logistic 

Model, also known as the Rasch (1960) Model, one of the most commonly reported in 

the literature. 

One-parameter Logistic Model 

 

Using the Rasch model, we can calculate the probability of an examinee 

answering an item correctly with the following formula: 
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where Pi() is the probability of a randomly chosen examinee with ability  

answering item i correctly. 

 e is the base of natural logarithms (2.718) 

  is the person ability measured in logits 

 bi is the difficulty parameter of the item measured in logits 
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What is a logit? 

A logit is a unit on a log-odds scale. The most important point to note is that 

IRT models are probabilistic. Because of this, we are interesting in finding out the odds 

of an event occurring, much like betting shops in Britain and Las Vegas. The definition 

of the odds of an event happening is the ratio of the probability of it occurring to the 

probability of it not occurring. For example, on a roulette wheel, there are 38 slots, so 

your probability of success is 1/38, and your probability of failure is 37/38. Your odds 

in favour of winning are 1 to 37. 
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With IRT, the probability of an event occurring is the probability of correct 

response, or Pi(θ), and the probability of the event not occurring is Qi(θ) =1- Pi(θ), 

which is defined as the probability of a randomly chosen examinee with ability θ 

answering item i incorrectly (see Formula 4). 

    ibi
e

Q






1

1
 (4) 

The odds of a correct response are 
 
 ¸
¸

i

i

Q

P
. 

 
 

 

 

 

 

 
   ii

i

i

i

i

i

bb

b

b

b

b

b

i

i ee
e

e

e

e

e

Q

P 


















 











1*
1

1

1
1

¸

¸
 

We can see that the odds in favour of a correct response is equal to e
(θ-b) 

.
 
Taking 

the natural log on both sides we get, 
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The log of the odds is equal to θ - bi. , i.e. the difference between the ability of 

the student and the difficulty of the item measured in log-odd units, or logits (L). The 

higher the value of the estimate of ability, , the more ability the case, or person, has. 

The estimate of ability, , can range from -<  < .  Likewise, the higher the value of 

the estimate of difficulty, b, the more difficult the item is. The estimate of item 

difficulty, b, can also range from - < b < . As the difference between  and b 
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increases, the probability approaches zero, determine the probability of the answer 

being correct.  Conversely as the difference decreases, the probability approaches 0. For 

example, at θ - b= 5, the probability of a correct answer would be .9933, or at θ - b= -5, the 

probability of a correct answer would be .0067. 

 

We can plot the probability of a correct response to an item as a function of 

ability and get the Item Characteristic Curve (ICC).  For example, in Figure 1, we can 

see the ICC of an item with difficulty 1.00, and this presents in visual form the 

information contained in the sixth column in Table 1.  For most item analyses, a 

threshold, based on the probability of a correct response, is set by convention at .50. 

This threshold is significant in that it also establishes the location of the ICC, or where 

the ICC is located relative the horizontal ability axis (see Figure 1). Line A represents 

the threshold where persons of ability 1.00 have a .50 chance of getting the item correct.  

What this means is that the ability of a respondent is set when the respondent has a 50 

percent probability of getting the answer correct.  This occurs when the ability of the 

respondent matches the difficulty of the item. 

Figure 1. Characteristic Curve and Information Function of the Item 

 

A 

 

Information Function 

Also seen in Figure 1 is a graph of one of two information functions, the Item 

Information Function. Information functions are vital to the calculation of the Standard 

Error of the Estimate (SEE), an IRT statistic that can be interpreted in the same way as 
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the SEM of Classical Test Theory. The Item Information Function for a 1-parameter 

logistic model is defined as: 

       iii QPI   (5) 

This makes intuitive sense, if you look at the graph of the Item Information Function in 

Figure 1. A test item that everyone knows does not reveal very much information other 

than that everyone‟s ability is higher than the difficulty of the item. Likewise, the same 

is true for a difficult item that no one can answer correctly. Useful information is 

obtained only when some examinees know the item and when some do not. 

The Test Information I() is the sum of all the Item Information at θ. 
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where D is a scaling factor of 1.70 to make the logistic probability distribution 

function similar to the normal probability distribution function 

 

Finally, the SEE is equal to the reciprocal of the Item Information Function, i.e.,  
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With a computer adaptive test, the Test Information is calculated after the 

response to each item, and therefore can serve as a useful criterion for ending a test, 

once a sufficiently accurate score is obtained. For a test such as V-check, which had the 

Test Information set at 10, the SEE is about .32 logits. In order to obtain the comparable 

reliability index from a computer adaptive test, this SEE can be used. Thissen (2000) 

suggests the following formula, 

 

 21 SEEr   (7) 

 

For V-check, this corresponds to a reliability coefficient of .90. V-check, 

however, does not report these logit scores, as they can be quite meaningless out of 

context. The logit scores are converted to the number of known words based upon a 

non-linear regression formula between the ability, as measured in logits, and the number 

of known words, as seen in Figure 2 (Thissen, 2000). 
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Figure 2. Non-linear Regression between Ability in Logits and Lexical Size 

 

 The following explanation pertains to both the SEE and the standard deviation 

(SD) of a group. In many way, the relationship between an individual‟s score and his or 

her SEM is the same as the mean of a group and the Standard Deviation. Both explain 

the expected value of scores using the normal distribution. As with the individual scores, 

the mean of the group is calculated in logits and converted to known words. However, 

the standard deviation (SD), like the standard error, is not reported because of the 

asymmetrical nature of its distribution. In Figure 2, the normal distribution of logit 

scores from a group is shown on the horizontal axis to illustrate how the mean and 

standard deviations, when measured in logits, are converted to the number of known 

words. As can be seen from the figure, the standard deviations are symmetrical around 

the mean. However, because the regression line is non-linear, this symmetry does not 

transfer to the number of known words. Table 1 presents a hypothetical class with a 

mean of .90 logits and a Standard Deviation of .50. In this class, 68% of the students‟ 

scores would fall between .40 and 1.40 logits. In terms of the number of known words, 

the mean of the ability would be converted into a mean of about 3,900 known words 

(rounded to the nearest tens). One standard deviation below the mean (.40) translates 

into a score of about 3,520 words, or 380 words below the mean. One SD above the 

mean is converted to 4,250 words or 350 words above the mean. Table 1 shows the gaps 
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between the mean and the converted number of words for 2 standard deviations above 

and below the mean. Because of this asymmetrical distribution, the use of standard 

deviations in statistical tests would be meaningless and would violate many of the 

assumptions of the statistical models. Given that the ability logit is a much sounder and 

more defensible measure than the number of words known, we plan to release a scaled 

score, known as a Lexxit, to interested researchers. Please contact us for details. 

 

Table 1. Means, Standard Deviations and Number of Known Words 

Interval Ability Known  SD in 

  Words Words  

-2SD -0.1 3130 770  

-1SD 0.4 3520 380 

Mean 0.9 3900 

+1SD 1.4 4250 350 

+2SD 1.9 4570 670  
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